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1. Introduction

Many formalisms have been introduced for calculating scattering amplitudes for super-

strings. The most practical of these have been (covariant) Ramond-Neveu-Schwarz (RNS) [1],

(lightcone) Green-Schwarz (GS) [2], hybrid RNS-GS (H) [3], and pure spinor (PS) [4]. All

of these have (at least) two important defects:

1. Some kind of insertion is required. It may be separate from the vertices, or may be

combined with some vertices to put them into different “pictures”. The result is to

complicate the calculations or destroy manifest symmetry. (The only exception is

tree graphs with external bosons only, where such methods make cyclic symmetry

more obscure but avoid producing extra terms that cancel.)

2. Supersymmetry is not completely manifest. The most serious case is RNS, where

fermion vertices are much more complicated than boson (because the spinors are

not free fields, so in practice noncovariant exponentials of bosons must be used),

and sums over spin structures (periodic/antiperiodic boundary conditions) must be

performed in loops. In the GS and H cases there is partial supersymmetry (and

partial 10D Lorentz invariance), which complicates vertices for the “longitudinal”

directions, which are required for general higher-point calculations; for this reason

we will not consider GS and H in detail. The most symmetric is PS, which has only

an integration measure that is explicitly dependent on the spinor coordinates.

In a previous paper [5] we introduced a new formalism for the superstring (based on

a similar one for the superparticle [6]) using an infinite pyramid of ghosts for the spinor

coordinate (GP) [7]. A derivation was also given from a covariant action. (The RNS

action is not spacetime-supersymmetry covariant. The GS action [8] has defied covariant

quantization [9]. The H and PS formalisms do not follow from the quantization of an action

with general worldsheet metric.) The Becchi-Rouet-Stora-Tyutin operator found there was

rather complicated, but fortunately none of the results of our previous paper will be needed

explicitly here for calculation, but only for justification of the validity of our approach. In

fact, the gauge-fixed action and massless vertex operators were guessed much earlier [10].

(An early attempt to apply them to amplitude calculations failed because spinor ghosts

were not included [11].) The fact that these simple rules can be applied so naively hints

that perhaps an even simpler formalism exists that implies the same rules.

There are (at least) two new conceptual results in this paper (in addition to the explicit

calculations), both of which involve the treatment of zero-modes. These allow us to evaluate
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trees and loops without evaluating explicit integrals or (super)traces over these zero-modes,

thereby solving the above two problems:

1. In loop calculations we infrared regularize the worldsheet propagators. In principle

one should do this anyway, since IR divergences are notorious in two dimensions,

especially for 2D conformal field theories, but usually such problems are avoided

by examining only IR-safe quantities. In our case such a regularization allows a

simple counting of the infinite number of zero-modes arising from the ghost pyramid

(including those from the physical spinor), with the only result being the introduction

of factors of 1/4 due to the usual summation 1−2+3−· · · = 1/4. (Regularization of

x zero-modes is unnecessary; it only replaces the momentum-conservation δ-function

with a sharp Gaussian.)

2. In tree graphs these zero-modes do not appear separately, having been absorbed

into the definition of the (first-quantized) vacuum. Specifically, since we do not

perform explicit integration over spinor zero-modes, we also do not need to define

measure factors for such integrations, make insertions of operators (essentially Dirac

δ-functions in those modes) to kill those modes, nor use operators of different pictures

to hide such insertions. We do not make special manipulations to deal with such

modes; care of them is taken automatically by naively ignoring them. Although we

do not analyze this vacuum (or other) state in detail here (we effectively work with the

old Heisbenberg matrix mechanics, ignoring Schrödinger wave functions), we explain

why such behavior is implied by the standard N = 1 superspace formulation of the

vector multiplet.

The net result of these ideas is that the calculational rules are the most naive general-

ization of the rules of the bosonic string: (1) The b and c ghosts appear in the same way,

affecting only the measure. (2) The spinor ghosts serve only to ensure correct counting of

zero-modes, and give an extra factor of 1/4 to any trace of γ-matrices. (3) IR regularization

takes care of all (physical and ghost) spinor zero-modes. (4) The vertex operator for the

massless states generalizes the bosonic-string one just by adding the same spin terms as in

ordinary field theory or supergraphs (to include the spinor vertices), taking into account

the stringy generalization of the algebra of covariant derivatives [10].

Consequently, for the case of tree graphs with external vectors only, our rules are

almost identical to (R)NS calculations in the F1 picture. We explain the advantage of this

picture and why it is more relevant to the superstring.

As an interesting side result, we show how the ∂θ terms in the DPΩ current algebra

arise already in the superparticle.

2. Rules

2.1 Vertex operators

We now present the main result of this paper, the rules themselves, with examples later.

(Derivations are given in the appendices.) Here we will calculate amplitudes with only
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massless external states. (We also concentrate on open strings, but the results generalize

in the usual way to closed.)

To a limited extent first-quantization can be applied to particles as well as to strings:

It gives only one-particle irreducible graphs (vertices at the tree level), whereas for the

string it gives complete S-matrix amplitudes by duality (for given loop level and external

states). However, the methods are almost identical, particularly since the superparticle is

the zero-modes of the superstring.

The vertex operators follow from the results of our previous paper [5] but are basically

those of [10] with a small modification from ghosts (as expected from the integrated vertex

operators of PS [4]):

V = AA(x, θ)JA

where AA are superfields and JA are 2D currents:

AA = (Aα, Aa,W α, F ab)

JA = (Ωα, Pa,Dα, Ŝab)

where JA have zero-modes jA, of which only pa and dα act nontrivially on AA. D,P,Ω

are the currents of [10], while Ŝ is the Lorentz current of the θ ghosts (“superspin”).

(Appendix A gives the relation of vertex operators between Lagrangian and Hamiltonian

formalisms.)

As for the bosonic string, the integrated vertex operator is
∫

V and the unintegrated

one is cV ; the b and c ghosts work in exactly the same way, to keep the measure conformal.

(We could also add a term α′(∂aA
a)∂c to the unintegrated vertex operator to avoid having

to apply ∂aA
a = 0 [12].)

The external-state superfields and the currents can be expanded in θ for evaluation in

terms of 2D Green functions of the fundamental variables: For example, the vertex for just

the vector is then

VB = Aa(x)∂xa +
1

2
F ab(x)Sba

where S is the Lorentz current of all θ’s, physical and ghost. There are also terms higher-

order in θ, but in the absence of external fermions there are no π’s to cancel the extra θ’s, so

such terms won’t contribute. Because of its universality, this form is useful for comparison

to other formalisms.

2.2 Current algebra

However, when calculating general amplitudes (including fermions), it is more convenient

to expand neither the currents nor superfields (thus manifesting supersymmetry). This

requires rules for evaluating products of arbitrary numbers of currents. Although this

problem is generally intractable for arbitrary representations of arbitrary current algebras,

in our case it is relatively simple:

1. Ŝ doesn’t act on the superfields. It is quadratic in free fields, so the matrix element

of any product of such currents is simply the sum of products of loops of them (in

2D perturbation theory), from contracting the (ghost) θ of one with the π of the
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next. Each such loop contributes the trace of the product of the γ matrices that

appear sandwiched between θ and π in Ŝab = θγabπ|> (where “|>” means to restrict

to ghosts).

2. The remaining currents Dα, Pa, and Ωα form a separate algebra. Although their

“loops” are more complicated (since D is cubic in free fields), the structure constants

are so simple that no loop contains more than 4 currents: only the combinations PP ,

DΩ, DDP , or DDDD. Since D and P (but not Ω) can also act on superfields, the

matrix element of such currents and superfields reduces to the sum of products of

these 4 types with strings of D and P acting on superfields.

The loops are:

〈Pa(1)Pb(2)〉 = −ηabG
′′
x(1, 2)

〈Dα(1)Ωβ(2)〉 = −iδβ
αG′

θ(1, 2)

〈Dα(1)Dβ(2)Pa(3)〉 = −iγaαβ [2Gθ(2, 3)G
′
θ(1, 3) − 2Gθ(1, 3)G

′
θ(3, 2)

+Gθ(1, 2)(G
′′
x(1, 3) + G′′

x(2, 3))]

〈Dα(1)Dβ(2)Dγ(3)Dδ(4)〉 = 2iG′
θ(1, 2)Gθ(1, 3)Gθ(1, 4)(γ

a
αγγaδβ − γa

αδγγβ)

+2iG′
θ(1, 2)Gθ(2, 3)Gθ(2, 4)(γ

a
βδγγα − γa

βγγaδα)

+iG′′
x(1, 2)

[

Gθ(1, 3)Gθ(2, 4)γ
a
αγγaβδ

− Gθ(2, 3)Gθ(1, 4)γ
a
βγγaαδ

]

+ perm. (2.1)

where 〈 〉 refers to fully contracted operator products, and “1” means “z1”, etc. We

have distinguished the x and θπ Green functions (Gx and Gθ) because only Gθ gives

zero-mode corrections, which is explained in detail in appendix E. For N string loops,

G is a genus-N Green function: for trees, G′
x(z1 − z2) = −iGθ(z1 − z2) = − 1

z1−z2
and

G′′
x(z1 − z2) = −iG′

θ(z1 − z2) = 1
(z1−z2)2

; at 1 string loop they are Jacobi theta functions

and their derivatives; etc.

The action of the currents on the fields is given by considering all possible symmetriza-

tions of the D’s. Any symmetrization of 2 D’s (acting on a field) gives

D(α(1)Dβ)(2) → Gθ(1, 2)γ
a
αβ [Pa(1) + Pa(2)] (2.2)

This reduces any string of currents to sums of strings of P ’s times antisymmetrized strings

of D’s, which are evaluated as

D[α(1) · · ·Dβ](2)Pa(3) · · ·Pb(4)A(5) = Gθ(1, 5) · · ·G′
x(4, 5)(d[α · · · dβ]pa · · · pbA)(5) (2.3)

where pa = −i∂a, and we can replace πα = ∂/∂θα with the usual supersymmetry covariant

derivative dα in such antisymmetrizations since final results can always be evaluated at

θ = 0 by supersymmetry.

By 10D dimensional analysis, any Ŝ loop is dimensionless, while any DPΩ loop has

dimension 2. This implies (contrary to expectations, but well known from the bosonic case)

that each DPΩ loop carries an extra factor of the inverse of α′. (In the particle case, there
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is instead an inverse of z.) Thus, the maximum number of DPΩ loops gives the lowest

power in momenta, and each loop less gives two more powers of momenta. (One way to see

the dimensional analysis is to note that each current acting on a superfield gives a G′
x or

Gθ. The same is true in a DPΩ loop, except that 2 currents “close” the loop to give a G′′
x

or G′
θ. Thus, each DPΩ loop introduces an extra factor of G′′

x(or G′
θ)/(Gθ)

2. On the other

hand, closing an Ŝ loop gives a (Gθ)
2 instead of G′

θ, so such loops give no extra factor.)

Finally, there is the usual momentum dependence coming from Green functions con-

necting the superfields to each other, from their x dependence only: For the usual plane

waves,

〈A(1) · · ·A(N)〉 = A · · ·A e−
P

i<j ki·kjGx(i,j) (2.4)

with units α′ = 1/2 for the string.

2.3 Component expansion

The final result for an amplitude is given as a “kinematic factor” times a scalar function

of momentum invariants, expressed as an integral over the worldsheet positions of the

vertices. The kinematic factor is expressed, by the above procedure, as a sum of products

of superfields, representing external state wave functions. The string rules have effectively

already performed covariant θ integration, so these superfields may be evaluated at θ = 0.

(As in the usual superspace methods, where θ expansion and integration is replaced by the

action on the “Lagrangian” of the product of all supersymmetry covariant derivatives dα,

supersymmetry guarantees that all θ dependence cancels, up to total x derivatives.)

The evaluation of spinor derivatives follows from the (linearized) constraints on the

gauge covariant superspace derivatives, and their Bianchi identities [13]. The result is

d(αAβ) = 2γa
αβAa

dαAa − ∂aAα = 2γaαβW β

dαW β =
1

2
γab

α
βFba

dαF ab = 2iγ
[a
αβ∂b]W β (2.5)

The result is also (linearized) gauge invariant (except for ∂aA
a = 0, as explained above),

so one may use a Wess-Zumino gauge where Aα = 0 at θ = 0. (A review of gauge covariant

derivatives appears in appendix C.)

2.4 IR regularization

In evaluation of tree graphs there is the usual δ-function for conservation of total momentum

from the zero-modes of x, but θ effectively has no zero-modes: The effect of the θ ghosts is

to mimic GS where, unlike momentum, the 8 surviving fermionic variables of the lightcone

are self-conjugate, and thus have no vanishing eigenvalues. Thus there is no residual

integration over θ zero-modes (unlike PS).

In loops there is the usual summation over θ zero-modes in the sum over all states,

but the ghosts again mimic GS by effectively reducing the number to 8 from the physical
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32 (θ and conjugate π), using the sum

1 − 2 + 3 − 4 + · · · = 1/4

when counting the number of θ’s at successive ghost levels (alternating in statistics). Ap-

plication of this rule requires infrared regularization of the 2D Green functions to “remove”

the zero-modes: The factor in the partition function from these zero-modes is the IR reg-

ulator ε to the power 16 × 1/4 = 4 (from the 16-valued spinor index on the θ’s). Since

the θπ Green function goes as 1/ε (+ the usual finite expression + O(ε)), the amplitude

vanishes until 4-point. Thus the power of the regulator counts zero-modes.

The 1/4 rule also applies in γ-matrix algebra. Amplitudes involve traces of products

of γ-matrices. These matrices are the same at each ghost level (except that chirality,

as well as statistics, alternates with ghost level), so the net effect of the ghosts appears

only when taking a trace: Applying the usual γ-matrix identities, the trace is reduced to

str(I) = 16×1/4 = 4, again reproducing GS. The difference from GS is that the γ-matrices

are for 10 dimensions, so the result is Lorentz covariant, and the usual 10D Levi-Civita

tensor is produced (where appropriate) instead of spurious 8D ε-tensors. For example,

anomalies can be found from 6-point graphs. (Details of the regularized Green functions

are given in appendix E.)

3. Trees

3.1 RNS pictures

We begin by proving that the trees with external bosons are identical to those obtained from

(the NS sector of) RNS. This is most obvious in the F1 picture. Although this picture was

the original one to be used in (R)NS amplitude calculations, it was immediately replaced

with the F2 picture [14]. We refer here to the picture for the physical coordinates (x, ψ),

and not just the ghosts: For example, vector vertices have always been ∂x + · · · except

for two ψ vertices, while in the F1 picture all vertices are ∂x + · · · . In the proof of

equivalence [14], starting from the F1 picture, one pulls factors of (the ±1/2 modes of)

G = ψ ·∂x (worldsheet supersymmetry generator) off of two unintegrated ∂x+ · · · vertices

to turn them into ψ vertices, then collides the G’s to produce (the 0 mode of) a worldsheet

energy-momentum tensor T , which gives a constant acting on a physical state. (With

ghosts the approach is similar, with G replaced with the picture-changing operator, which

is simply the operator product of the gauge-fixed G with eφ in terms of the bosonized ghost

φ.) The resulting rules are then the same as the rules for the bosonic string, including the

factors of c for the three unintegrated vertices, except that the ∂x vertex has the extra spin

term. The β and γ ghosts are completely ignored; the vacuum used is in what is usually

called the “−1 picture”, so the zero-modes of γ (or φ) are already eliminated. (What

is usually called “picture changing” in the modern covariant formalism would start with

the F2 picture, introduce two factors of picture changing times inverse picture changing,

use the picture changing to change the two ψ vertices, and use the inverses to change the

initial and final vacuua. Unfortunately, the inverse has an overall factor of c, so in the new
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vacuum 〈γγc〉 ∼ 1 [15], and the γ’s pick out the ψ terms again in two of the unintegrated

vertices γψ + c(∂x + · · · ). Thus such transformations preserve the F2 picture as far as the

physical sector is concerned.)

Historically, the F1 picture was introduced first because: (1) It is more similar to

the bosonic string, and (2) cyclic symmetry is manifest (no need to bother with picture

changing). The F2 picture was then chosen because the physical-state conditions were more

obvious. Although in modern language the BRST conditions are clear in either picture,

it’s interesting to examine the differences in the pictures if the ghosts are ignored, since the

ghosts differ in different formulations of the superstring, but all formulations have similar

integrated vertices. Then the ground state of the F2 picture is the “physical” tachyon, at

m2 = −1/2, while in the F1 picture it’s an “unphysical” tachyon at m2 = −1. Furthermore,

the F1 picture has an additional “ancestor” trajectory 1/2 unit higher than the leading

physical trajectory. These “disadvantages” were noticed in the days before Gliozzi-Scherk-

Olive projection. On the other hand, for the superstring this projection eliminates the

“physical” tachyon as well as the ancestor trajectory. So the only remaining additional

unphysical state of the F1 picture is its vacuum, while GSO projection has eliminated

the vacuum of the F2 picture altogether! This suggests that any comparison of the RNS

formulation to others would be easier in the F1 picture.

3.2 For bosons only

The proof of equivalence of the F1 vector trees to the vector trees of our formalism is then

simple: One only has to note that the operator algebra of the vertices is identical. But

the vertices are identical in form; only the explicit representation of the spin current is

different. So one only has to check the equivalence of the two current algebras. Since they

are both (10D) Lorentz currents, quadratic in free fields, this means just checking that the

central charge is the same. (The same method has been used for comparing PS to the F2

picture [16].) The reason the result for the central charge is the same is that the GP result

is the same as the GS result: The γ-matrix algebra is the same except for a trace, which

is 1/4 as big in the lightcone as for a covariant spinor, but GP again gets a factor of 1/4

from summing over ghosts. (As we’ll see below, similar arguments apply in loops, unless

one gathers enough spin currents to produce a Levi-Civita tensor.)

The calculations in the F1 picture (and GP) are somewhat harder than the F2 picture

because two vertices have been replaced with ones that generate more terms, which cancel.

Also, RNS bosonic trees are simpler than PS or GP because integration over the vector

fermion ψa effectively does all γ-matrix algebra. However, tree amplitudes with fermions

are much harder in RNS than PS or GP (and increase in difficulty as the number of fermions

increases). PS is still simpler than GP, because θ integration takes the place of the change

in the two vertices, and so also avoids generating extra terms. So, for trees RNS is the

easiest for pure bosons, PS is easiest with fermions, and GP is a bit harder than both.

However, GP requires fewer rules, since all vertices are the same, so it produces more

terms at an intermediate stage but is easier to “program”. This feature is a peculiarity of

tree graphs: At the loop level we’ll see that GP maintains the simplest rules, while RNS

produces extra terms that cancel (because supersymmetry is not manifest).
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At first sight these rules for GP might seem peculiar because there is no explicit

integral over spinor zero-modes, as expected in known superspace approaches. The answer

can be seen from examining the simpler (and better understood) case of 4D N=1 super

Yang-Mills. Since the vacuum of the open bosonic string can be identified with a constant

Yang-Mills ghost (or gauge parameter), we examine the ghost superfield φ, and look at

φ = 1, a supersymmetric condition. Since this superfield is chiral, and supergraphs prefer

unconstrained superfields, we write φ = d̄2χ in terms of a general complex superfield χ.

Then clearly χ = θ̄2 in our case. This is still supersymmetric because of the gauge invariance

δχ = d̄α̇λα̇. Furthermore, this χ has a nice norm,
∫

d4θ |χ|2 = 1. In Hilbert-space notation

we thus write the norm and supersymmetry as

〈0|0〉 = 1, qα|0〉 = Q|λ〉α

so the vacuum is supersymmetry invariant up to a BRST triviality, and the norm includes

zero-mode integration, but the extra zero-modes are absorbed by the vacuua, and no inser-

tions are required. (We could also use |λ〉α = Λα|0〉 to define q̂α = qα − [Q,Λα], q̂α|0〉 = 0.)

This supersymmetry of the vacuum is enough to ensure the amplitudes transform correctly,

since the vertex operators are superfields times supersymmetry invariant currents, and the

vacuum and vertex operators (integrated and unintegrated) are BRST invariant. (The

unintegrated vertex operators we have used are BRST invariant only after including terms

higher-order in ghost θ’s, which don’t contribute to amplitudes for massless external states,

and probably not for massive ones either, because of the absence of ghost π’s to cancel

them.) The fact that the vacuum is “half-way” up in the θ expansion was also found for the

expansion in the spinor ghost coordinates in a lightcone analysis of the BRST cohomology

for the GP superparticle [6]. Note that this choice of vacuum is relevant only for trees; at

1 loop one effectively does a (super)trace over all states rather than a vacuum expectation

value, so the vacuum is irrelevant. (We assume a similar situation will occur at higher

loops, but we have not checked yet.) As we will see below, one important affect on this

vacuum choice for trees, which does not affect loops, is that:

For tree graphs only, background fields are always evaluated in the Wess-Zumino gauge.

If this vacuum structure can be better understood, it might be possible to find an

analog of the F2 picture for GP, avoiding the production of extra canceling terms, making

it the simplest formalism even for trees. As an attempt at formulating such a picture,

one can consider this picture for RNS: For pure bosons, two vertices must be in the “−1

picture”, so it is convenient to consider those two as the initial and final states, using the

vertex operators on the initial and final vacuua. Generalizing only those 2 states to include

fermions, we can write their vertex operators as in GP, but now identifying the currents

with

Dα = e−φ/2Sα, Pa = e−φψa, Ωα = e−3φ/2Sα

The first two are the usual for the spinor (in the −1/2 picture) and vector (in the −1

picture), while the last can be identified as that for the spinor in the −3/2 picture (also

with conformal weight 1) if we use the “supersymmetric gauge”

W α ∼ γaαβ∂aAβ
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instead of the WZ gauge. (Hitting cAαΩα with picture changing produces cW αDα.) These

currents satisfy almost the same algebra as the usual ones (including DP ∼ Ω, to leading

order); the only exceptions are ΩP and ΩΩ. As a guess for the GP analog, we can then try to

construct a new DPΩ for this picture that depends only on the ghosts. Unfortunately (the

simplest guess for) this construction seems not to work, apparently because the dependence

on the WZ gauge hasn’t been eliminated, and is incompatible with the supersymmetric

gauge.

3.3 General 3-point

As explained in section 2, we prefer the superfield formalism for the calculation of ampli-

tudes with fermions. This includes the all-vector amplitude in the same calculation. The

only nonvanishing operator products for the 3-point tree, after applying the Landau gauge

condition (∂ · A = 0), are:

A. 〈Pa(1)Pb(2)〉 × Pc(3)A
a(1)Ab(2)Ac(3) + permutations

B. (Pc(3)A
a(1))(Pa(1)Ab(2))(Pb(2)A

c(3)) + perm.

C. 〈Pa(1)Pb(2)〉 × Dα(3)Aa(1)Ab(2)W α(3) + perm.

D. 〈Dα(1)Dβ(2)Pa(3)〉 × W α(1)W β(2)Aa(3) + perm.

E. 〈Dβ(2)Ωγ(3)〉 × Dα(1)W α(1)W β(2)Aγ(3) + perm.

F. (Dγ(3)W α(1))(Dα(1)W β(2))(Dβ(2)W γ(3)) + perm.

G. 〈Ŝab(1)Ŝcd(2)〉 × Pe(3)F
ab(1)F cd(2)Ae(3) + perm.

H. 〈Ŝab(1)Ŝcd(2)Ŝef (3)〉 × F ab(1)F cd(2)F ef (3) (3.1)

where the Ŝ contraction is the usual γ trace.

The other contributions, like (〈DαΩβ〉P ) · AW αAβ, (〈SS〉Dα) · FFW α, (PPDα) ·
AAW α and (PDαDβ)AWW , all vanish using ki · kj = 0, k/W = 0 in the Wess-Zumino

gauge. We give some details of the calculation in appendix F.

Notice that F and H combine to give the GP sum 1 − 2 + 3 − 4 · · · = 1/4. From these

combinations we find the manifestly supersymmetric 3-point tree amplitudes for vectors

and spinors

Atree
3 = k1 · A(3)A(1) · A(2) + k3 · A(2)A(1) · A(3) + k2 · A(1)A(2) · A(3)

+iA(1) · W (2)γW (3) + iA(2) · W (3)γW (1) + iA(3) · W (1)γW (2) (3.2)

where A(i) are the vectors and W (i) the spinors. (Note that we use the usual anticommut-

ing fields for the spinors; numerical evaluation involves fermionic functional differentiation,

replacing these fields with the usual commuting wave functions, and may introduce signs

if not all terms have the same ordering.)

This result applies to both the superparticle and superstring. In the string case there

is also a factor of 1/(z1−z2)(z2−z3)(z1−z3) from the Green functions, but this is canceled

as usual with the inverse factor from the conformal measure obtained from 〈c(1)c(2)c(3)〉.
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4. IR regularization

4.1 Zero modes

The kinematic factor in supersymmetric amplitudes is closely related to the spinor zero-

mode problem, which is the most important problem in the Lorentz covariant superparticle

and superstring. If we naively integrate over zero-modes of the infinite pyramid of spinors

with no vertex attached, we find 0·∞2 ·03 ·∞4 ·05 ·∞6 · · · . So we need to regularize the zero-

mode integration. In appendix E we derive the 2D Green function with a 2D regularization

mass, but it turns out that the zero-mode behavior of the 2D Green function is exactly that

of the 1D one. So we will concentrate on the 1D case here. To do this IR regularization

we introduce small mass terms in the superparticle free action (for 1D “proper time”

coordinate z)

Xa(−∂2
z + ξ2)Xa, −iπ(∂z + ε)θ (4.1)

Now we can fix the measure of zero-modes for X and θ without ambiguity. For X,

neglecting the Laplacian term, which vanishes for zero-modes,

lim
ξ→0

∫

dDX0 e−Tξ2X2
0/2−i(

P

k)·X0 = lim
ξ→0

(

2π

Tξ2

)D/2

e−(
P

k)2/2Tξ2

= (2π)DδD
(

∑

k
)

=

∫

dDX0 e−i(
P

k)·X0

where T is the range of z (at 1 loop, the period). Here we used limξ→0 e−x2/2ξ2
/
√

ξ =√
2πδ(x). Therefore our zero-mode measure for X is

∫

dX0 = lim
ξ→0

(

2π

Tξ2

)D/2

(4.2)

However, this bosonic zero-mode does not appear explicitly, since this always gives mo-

mentum conservation thanks to the vertex operators.

Similarly for θ we see

∫

dθ dπ eiT επθ = (iεT )±2(D−2)/2
(4.3)

where “±” stands for fermionic and bosonic spinor respectively. Then our zero-mode

measure for a spinor is
∫

dθ dπ = lim
ε→0

(iεT )±2(D−2)/2
(4.4)

In our case we have an infinite pyramid of spinors and hence we get

∫

dθ dπ = lim
ε→0

(iεT )(2
(D−2)/2)(1−2+3−4+··· )

= lim
ε→0

(iεT )2
(D−6)/2

(4.5)
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where we used coherent-state regularization for the ambiguous sum 1 − 2 + · · · = 1/4:

tr[(N + 1)(−1)N ] =

∫

d2z

π
e−z∗z〈z|(a†a + 1)(−1)a

†a|z〉

=

∫

d2z

π
e−|z|2(〈z|a†a| − z〉 + 〈z| − z〉)

=

∫

d2z

π
(−|z|2 + 1)e−2|z|2

= −1

4
+

1

2
=

1

4
(4.6)

More intuitively

1

1 + x
= 1 − x + x2 − x3 + x4 · · ·

1

(1 + x)2
= 1 − 2x + 3x3 − 4x4 + · · ·

so at x = 1 we get 1/2 and 1/4 respectively.

Therefore in D = 10 we get effectively ε4 for zero-modes. So our complete spinor

measure with non-zero modes is

Dθ Dπ (iT ε)4 (4.7)

The significant role of this effective power will be clear after we discuss the Green function.

The regularization 1− 2 + 3− 4 + · · · = 1/4 explains how we can get a physical SO(8)

spinor contribution out of 2 covariant 16-component spinors π and θ. Because we cannot

project covariant spinors into physical spinors in a covariant way, we need to add infinitely

many ghosts to achieve this 1/4 reduction in amplitudes.

4.2 Regularized Green functions

We summarize the results of appendix E here. We find the regularized 1D Green functions

for x and θ

Gx(z) =
1

2ξ

cosh[ξ(|z| − T/2)]

sinh(ξT/2)

Gθ(z) = i(−∂z + ε)

[

1

2ε

cosh[ε(|z| − T/2)]

sinh(εT/2)

]

(4.8)

The ε correction to ∂z in Gθ is nontrivial because it multiplies a Green function with a 1/ε

term.

It is convenient to expand the Green functions in ε when we calculate scattering am-

plitudes:

Gx =
1

ξ2T
+

∞
∑

n=0

Gx
nξn

Gθ =
i

εT
+

∞
∑

n=0

Gθ
nεn (4.9)
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where

Gx
0 =

T

12
+

|z|(|z| − T )

2T
=

T

12
+ Gx

un

Gθ
0 =

i

2
Sign(z) − i

z

T
= Gθ

un (4.10)

and Gx
un and Gθ

un are the usual 1D Green functions with periodic boundary conditions,

normalized to Gun(0) = 0. The extra constant will not contribute to massless amplitudes

because of derivatives and k2 = 0.

Because the mass (re)moves zero-modes, the usual fudges of the massless Green func-

tions are eliminated: There is no freedom to add constants (dependent on T , but not z) to

G, and the δ function in its equation of motion is not modified to δ(z) − 1/T to preserve

“charge conservation”. But the latter property is restored upon expansion in the regulator:

Gx =
1

ξ2T
+ ∆Gx, (−∂2 + ξ2)Gx = δ ⇒ (−∂2 + ξ2)∆Gx = δ − 1

T

Gθ =
i

εT
+ ∆Gθ, −i(∂ + ε)Gθ = δ ⇒ −i(∂ + ε)∆Gθ = δ − 1

T
(4.11)

Similarly we will do this expansion for superstring Green functions. The details are

given in appendix E. However, expansion of Gx is unnecessary, because in vertex operators

X appears only as Ẋ (and as an argument of the superfields), and any contraction involving

this vertex operator is always finite. (The derivative kills the potentially divergent 1/ξ2

term.) For this reason X regularization gives only energy-momentum conservation and is

irrelevant to amplitude corrections. But ε expansion of Gθ is crucial, as we will see in the

next section.

5. Loops

5.1 N < 4 super

Here we give simple examples. The only differences from standard first-quantization of a

loop of a scalar particle or bosonic string can be associated with “kinematic factors” that

may also depend on the positions of the vertices on the worldline/sheet. (For a summary

of the standard analysis of the other factors, see appendix D.)

Collecting the results of the zero-mode measure and the Green function zero-mode

behavior, the amplitude is zeroth order in ε.

Since there is an ε4 in the measure, we should pick up an ε−4 in the integrand of the path

integral. For example, one sub-diagram of the N-point 1-loop amplitude is proportional to
∮

dε ε3 Gθ(1, 2)Gθ(2, 3) · · ·Gθ(N, 1) (5.1)

Then to evaluate this amplitude we should expand each Gθ and collect terms with ε−4.

We now notice that every Gθ gives i/εT . For N < 4 there are not enough powers of

ε−1 and so their amplitudes just vanish.

There is no zero-mode behavior for any contraction involving ∂X because of the deriva-

tive. Therefore P contractions start to contribute only at N = 5 (a black dot in figure 1).

– 13 –



J
H
E
P
0
6
(
2
0
0
6
)
0
4
6

N=4

���� ����

N=5

���� ���� ��		 


�� ������

N=6

Figure 1: Schematic diagrams for various contractions.

5.2 N = 4 vector only

The first nonvanishing amplitude is at N = 4. However, this is just the case where every

Gθ from the Sab’s contributes i/εT . So the integration is trivially done for K4 and only

its spin algebra matters. There are two kinds of diagrams: the case where all 4 points

are connected, and the case where each pair of points is connected separately (figure 1).

These two diagrams have opposite sign. Each closed contraction should be traced over all

ghost pyramid spinors to give 1− 2 + 3− 4 + · · · = 1/4. Therefore we get for K4, omitting

external field factors,

K4 = −1

4

[

tr(γabγcdγefγgh) + 5 permutations
]

+
1

16

[

tr(γabγcd)tr(γefγgh) + 2 permutations
]

(5.2)

Using the Mathematica code Tracer.m we evaluate this gamma-matrix trace to find

K4 =
1

2
(δbcδdeδfgδha + δbeδcf δdgδha + δaeδfgδchδbd + 45 terms

from antisymmetrizing each pair of indices [ab][cd][ef ][gh])

−1

2

[

(δacδbd − δadδbc)(δegδfh − δehδfg)

+(δaeδbf − δaf δbe)(δcgδdh − δchδdg)

+ (δagδbh − δahδbg)(δceδdf − δcfδde)
]

(5.3)

This is the well-known kinematic factor for both tree and 1-loop. We can also express this

results in terms of F as [17]

F ac(1)F b
c(2)Fa

d(3)Fbd(4) −
1

8
F ab(1)Fab(2)F

cd(3)Fcd(4)
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−1

4
F ab(1)F cd(2)[Fab(3)Fcd(4) − 2Fac(3)Fbd(4)] (5.4)

which can be interpreted as “graviton”, “dilaton”, and “axion” as far as Lorentz (and not

gauge) structure is concerned. (In the nonplanar case, it actually corresponds to those

poles for color singlets in the 1+2=3+4 channel.)

5.3 N = 4 super

Here we again prefer the superfield formalism as explained in section 2. However, the 4-

point one-loop case is dramatically simplified due to the IR regularization. Consider the 4

types of fully contracted operators again and then notice that they can have only limited

1/ε factors, since each Gθ gives such a factor while Gθ ′ doesn’t:

Pa(z1)Pb(z2) : O(ε0)

Dα(z1)Ω
β(z2) : O(ε0)

Dα(z1)Dβ(z2)Pa(z3) : O(ε−1)

Dα(z1)Dβ(z2)Dγ(z3)Dδ(z4) : O(ε−2)

(Ŝ)n : O(ε−n) (5.5)

This means that except for Ŝ they appear at best from the 6-point at 1 loop. So the

only contractions for this amplitude are from Ŝ4 and Ŝ2d2. We also need to consider the

case where 4 d’s act on the superfields. Then we can directly write down the kinematic

factor for the manifestly supersymmetric, 4-point, 1-loop amplitude

1

4!
d[αdβdγdδ]W

α(1)W β(2)W γ(3)W δ(4)

+
3

32
tr(γabγcd)d[αdβ]Fab(1)Fcd(2)W

α(3)W β(4) + perm.

+K̂4(F
4) (5.6)

K̂4 is the same as K4 above except that the (super)traces don’t include the physical π, θ.

Of course, this missing contribution comes from (dβW α) (dαW β) (dδW
γ) (dγW δ) plus

different permutations of the d’s. Also, the missing contribution for the tr(γabγcd) terms

comes from −1
4W α(d[αdδ]W

β)W γ(d[γdβ])W
δ plus different permutations. Note that this

result already has the same form as the 4D N = 1 supergraph calculation for N = 4

super Yang-Mills [18] (if we rewrite it in Majorana notation for comparison), where there

tr(I) = 4 already, so Ŝ terms are unnecessary to produce str(I) = 16×1/4 = 4. (There the

d4 comes from overall θ integration, the d’s of the W ’s being killed by loop-θ integration.)

We give here the fermion part of the result of (5.6) and leave details to appendix F.

KFFBB
4 = − i

2
W (1)γabγc∂dW (2)F cd(3)F ab(4) + 3 ↔ 4

=
i

2
W (1)γabc∂dW (2)F ab(3)F cd(4) + iW (1)γa∂bW (2)F ac(3)Fc

b(4) + 3 ↔ 4

KFFFF
4 = −4k1 · k4 W (1)γW (2) · W (3)γW (4) + 2 ↔ 4 (5.7)
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where γabc = 1
3!γ[aγbγc]. (The [abc] means to sum over permutations with signs to anti-

symmetrize.) The second form of the FFBB amplitude can be interpreted as “axion” and

“traceless graviton” terms. (Using the fermion field equation and symmetry, the former

term is totally antisymmetric in abcd and a total curl on the fermions, as the FF fac-

tor is then for the bosons, while the latter term is symmetric and traceless in ab.) We

have written these amplitudes in manifestly gauge invariant form. Note that the complete

4-point amplitude is totally symmetric in all 4 external lines. (This was clear from the

original form (5.6).) This means that not only are the specific cases listed above separately

symmetric between boson lines and between fermion lines (if we had used wave functions

instead of fermionic fields then they would be antisymmetric), but the amplitudes for other

arrangements of fermions and bosons are obtained simply by permutation. The usual rep-

resentations are given in appendix F.

5.4 N > 4 vector only

In principle there is no difficulty to evaluate higher-point diagrams. Some new terms occur

compared to the N = 4 case. First of all, ∂X can contribute from one vertex, acting on

a field, which is indicated by a black dot in figure 1. (All the other vertices contribute

contractions between θ(zi) and π(zj) from S.) Terms of the Green function higher-order

in the ε expansion start to appear and thus KN has zi dependence. We give a schematic

diagram for various types of contractions in figure 1. Notice that our diagram exactly

coincides with earlier covariant RNS results [19]. There can also be corrections from the

fermion partition function because of regularization. For example, this correction in the

6-point amplitude is proportional to θ′′′1 (0|iτ)/θ′1(0|iτ) (see appendix D.2).

5.5 N = 5 vector only

First we will consider the part of the amplitude that doesn’t have a black dot in figure 1.

Let’s call the graphs without and with a black dot Ka
N and Kb

N respectively. Since the

5-point amplitude has 5 sides we should choose Gθ
0 from exactly one side. This is true

for both the pentagon and triangle + ellipse graphs. The difference between them is the

gamma matrix trace factor. So we can write down the part of Ka
5 for a given group-index

ordering (the kth vector has θγakbkπ) as:

Ka
5 = −1

4
[Gθ

0(z2 − z1)tr(γ
a1b1γa2b2γa3b3γa4b4γa5b5) + 23 permutations]

+
1

16
[Gθ

0(z2 − z1)tr(γ
a1b1γa2b2γa3b3)tr(γa4b4γa5b5) + 11 permutations] (5.8)

Then we can write

Kb
5 =

5
∑

j=2

ka1
j Gx′(z1 − zj)K4(2, 3, 4, 5) + 4 permutations (5.9)

where K4 was given in subsection 5.2. Ka
5 and Kb

5 complete the 5-point planar amplitude.

Totally antisymmetric ε-tensor terms vanish because the 5 external momenta are not in-

dependent. Notice that the light-cone GS calculation reduces to our results after heavy

algebra [20], and RNS needs a spin-structure sum to produce this result [19].
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We postpone the N ≥ 6-point amplitudes to another paper, which will be interesting

because of the anomaly cancellation issue. One good thing in our covariant formalism is

that we have a totally antisymmetric ε-tensor naturally in the hexagon amplitude, where

we have enough momenta to have a nonvanishing result, contrary to the 5-point case.

6. Future

There are many avenues of further study, in particular:

1. Many types of diagrams can be calculated. At the tree level, diagrams with many

fermions have not yet been explicitly evaluated in any formalism. New algebraic

methods for the current algebra might be useful. At the 1-loop level, little has been

done with fermions or higher-point functions. Alternative IR regularization schemes

could be considered. The 2-loop 4-vector calculation would be a good test, and

nothing more than that has been done at 2 loops, and nothing at all at higher loops.

2. The Hilbert space needs to be studied covariantly, especially the vacuum, to com-

pletely justify the naive manipulations we have made for tree graphs. It would be

useful to find the relation of these methods to supergraphs, where explicit zero-mode

integrations appear (both in loops, corresponding to π zero-modes, and an overall in-

tegral for θ zero-modes.) Massive vertex operators for physical states are expected to

also be relatively simple, as the spinor ghosts should appear again in a minimal way

(as opposed to the more complicated structure of the BRST operator). The analogy

to second-quantized ghost pyramids (e.g., for higher-rank forms) might be useful:

There ghosts beyond the first generation (i.e., the usual Faddeev-Popov ghosts) ap-

pear only at 1 loop, to define the measure.

3. Closer relations to other formulations might exist. An analog to the F2 picture of

RNS might further simplify tree calculations. The many similarities with PS suggests

it might be a particular gauge choice of GP that truncates the ghost spectrum.

Acknowledgments

W.S. thanks Brenno Carlini Vallilo and Nathan Berkovits for discussions, and Nathan

Berkovits for explaining the modern covariant description of the F1 picture.

A. Hamiltonian to Lagrangian

A.1 Superparticle

In our previous paper we constructed the BRST operator for the superparticle and su-

perstring in a super Yang-Mills background [5]. From the BRST operator we can get the

gauge fixed Hamiltonian:

Hparticle
GF = {b,Qθ}

= −1

2
¤ + W α∇α +

1

2
F abθγbaπ|> (A.1)

– 17 –



J
H
E
P
0
6
(
2
0
0
6
)
0
4
6

0θ

θ01

θ02

θ10

θ 20

θ30θ 03

� ��

��

� ��

� �� �

� �	


�

� �

� ��

� �� �

� � � � � � � � � � � �� � � � � � � � � � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

11

ghost level

   

   

   

ghost number

2112

Figure 2: Infinite pyramid of ghosts.

where

¤ = −(pa + Aa)
2, ηab = δab

∇α = d0α + Aα

d0α = π0α + (p/θ0)α, π0α = ∂/∂θα
0

γab = −1

4
(γaγb − γbγa), {γa, γb} = 2δab

and ∇α,∇a are the graded covariant derivatives.

Notice that π and θ are shorthand notation for πp,q and θp,q, where p − q is the ghost

number and p + q is the ghost level. (Even level and odd level correspond to fermion and

boson respectively.) The expression “|>” means “ghosts only”.

Now we go to the Lagrangian form of the action for x. To obtain complete results

for the amplitude rules, we need to keep terms in the Hamiltonian quadratic in the back-

ground fields. This has two unusual consequences: In the Lagrangian, (1) all these terms

will become linear (as familiar from the bosonic case), and (2) such terms new to the

supersymmetric case will appear only with θ̇.

Neglecting ibċ and F · ŝ we see

−p · ẋ + iπθ̇ +
1

2
(p + A)2 + W α[π0α + pa(γaθ0)α + Aα]

⇒ −1

2
ẋ2 + iπθ̇ + A · ẋ − iAαθ̇α + W α

[

π0α + (ẋ − A) · (γθ0)α − 1

2
(γθ)α · Wγθ

]

By redefining π0α ⇒ π0α + A · (γθ0)α + 1
2(γθ0)α · Wγθ0 (deformed only with gauge fields)

we get

−1

2
ẋ2 + iπθ̇ − Aαiθ̇α

0 + A · (ẋ + iθ0γθ̇0) + W α

[

π0α + ẋ · (γθ0)α +
i

2
(γθ0)α · θ0γθ̇0

]
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The background terms then give the vertex operator

V = AAjA

= Aαωα + Aapa + W αdα +
1

2
F abŝba (A.2)

where

dα = π0α + ẋ · (γθ0)α +
i

2
(γθ0)α · θ0γθ̇0

pa = ẋ + iθ0γθ̇0

ωα = −iθ̇α
0

ŝab = θγabπ|> (A.3)

The fact that θ̇ vanishes by its free field equations is related to the fact that its con-

traction with π gives a δ(z), canceling a (spacetime) propagator, and thus contracting two

3-point vertices into a 4-point vertex. Thus, they originate from terms in the Hamilto-

nian quadratic in background fields. The string vertex operator is the same, with the z

derivative replaced with the left- or right-handed worldsheet derivative.

In our previous paper [5] the background coupling had additional terms involving the

expression Ra, quadratic in ghost θ’s. These terms never contribute to amplitudes because

there are no ghost π’s to cancel them. (ŝ has a ghost π, but together with a ghost θ.) This

is also true for the superstring.

A.2 Superstring

Like the case of the superparticle, the gauge fixed action for the superstring comes from

{
∫

b,Qsstring}, adding first-order terms: without background,

SGF =

∫

d2z P̂m∂mX − 1

2
ηmnP̂mP̂n + i

√
2
∑

±
∂±c±b±± + i

√
2
∑

±
∂±θ±π±

The
√

2 comes from ∂± = (1/
√

2)(∂0 ± ∂1).

We can introduce the background as for the particle case:

V = AAJA

= AαΩα + AaPa + W αDα +
1

2
F abŜba (A.4)

where

Dα = π0α + (γaθ0)α∂Xa + i
1

2
(γaθ0)αθ0γa∂θ0

Pa = ∂Xa + iθ0γa∂θ0

Ωα = −i∂θ0α

Ŝab = θγabπ|> (A.5)
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B. Current algebra

The operator (affine Lie) algebra remains simple because the currents are no more than

cubic in the fundamental variables:

JA(z1)JB(z2) = G′
AB(z1−z2)fAB

C [z′]JC(z′)+G′′
AB(z1−z2)ηAB+ :: JA(z1)JB(z2) :: (B.1)

where JA has zero-modes jA, of which only pa and dα act nontrivially on AA, and GAB is

the relevant Green function. For example, G
(n)
ab = G

(n)
x and G

(n)
αβ = G

(n−1)
θ . The various

definitions are

fαβ
a[z]Pa(z) ≡ γa

αβ[Pa(zα) + Pa(zβ)]

faαβ [z]Ωβ(z) ≡ 2γaαβΩβ(za)

fαaβ [z]Ωβ(z) ≡ −2γaαβΩβ(za)

ηα
β = −iδβ

α

η
β

α = iδβ
α

ηab = −ηab

otherwise vanish

and

:: JA(z1)JB(z2) :: AC ≡ : JA(z1)JB(z2) : AC

JA(z1)A
B(z2) = G′

AB(z1 − z2)(jAAB)(z2) + :JA(z1)A
B(z2):

AA(z1)A
B(z2) = e−k1·k2Gx(z1−z2):AA(z1)A

B(z2):

:: JA(z1)JB(z2) :: JC(z3) ≡ (−1)BCG′
AC(z1 − z3)fAC

D[z′]JD(z′)JC(z3)

+G′
BC(z2 − z3)fBC

D[z′]JA(z1)JD(z′)

+(−1)BCG′
AC(z1 − z3)fAC

D[z′] :: JD(z′)JC(z3) ::

+G′
BC(z2 − z3)fBC

D[z′] :: JA(z1)JD(z′) ::

+ :: JA(z1)JB(z2)JC(z3) :: (B.2)

It is then straightforward to get (2.1), which is all that is needed in amplitude calculations.

C. Component expansions

The θ expansion of the superfields follows directly from the constraints on the (super)field

strengths

[∇a,∇b] = Fab

{∇0α,∇0β} = 2γaαβ∇a

[∇0α,∇a] = 2γaαβW β

and the Bianchi identities that follow from them.
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Although in practice we perform component expansions by evaluating spinor deriva-

tives at θ = 0, we can also directly expand superfields in θ. In a Wess-Zumino gauge we

have:

Fab =
◦
F ab

W α =
◦

Wα +
1

2
(γabθ0)

α
◦
F ab

Aa =
◦
Aa + 2θ0γa

◦
W +

1

2
θ0γaγ

bcθ0

◦
F bc

Aα = (γaθ0)α
◦
Aa +

4

3
(γaθ0)αθ0γa

◦
W +

1

4
(γaθ0)αθ0γaγ

bcθ0

◦
F bc

where ◦ indicates θ0 independence, and we have expanded only to constant field strengths

W and F , which is sufficient for lower-point diagrams because of the deficiency of π’s. The

vertex operator V = VB + VF for the superparticle is then:

VB = i
◦
A · ẋ +

1

2

◦
F abθγbaπ

VF =
◦

Wα

[

π0α − iẋ · (γθ0)α − i

6
(γaθ0)αθ0γ

aθ̇0

]

(C.1)

Here θγabπ includes the physical π0, θ0. (In terms of superfields and currents we hide this

physical π0, θ0 in W α and Dα. Then Ŝ has only ghost number non-zero π, θ.) Notice

that the spinor vertex is the supersymmetry generator qα, which will happen again in the

superstring case. Inserting plane waves for the fields,

VB = Aa(iẋ
a + θγabπkb)e

ik·x (C.2)

VF = wα

[

π0α − iẋ · (γθ0)α − i

6
(γaθ0)αθ0γ

aθ̇0

]

eik·x (C.3)

The superstring vertices are essentially the same.

D. Loop review

D.1 Superparticle

Since our theory is 1st-quantized, we should calculate amplitudes in terms of worldline

Green functions with periodic boundary conditions [21]. So our partition function with

imaginary time is

N
∫ ∞

0

dT

T

∫

DX Dc Db Dθ Dπ Tr e−
R T
0

dz Lθ (D.1)

where

N =

∫

DP e−
R T
0 dzP 2/2 (D.2)

and
∫

dT/T comes from the Schwinger proper-time integral representation of the 1-loop

vacuum energy −Tr[ln(−¤)].
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Since this is a 1-loop amplitude, we should impose periodic boundary conditions, on

both X and θ (to preserve supersymmetry):

X(T ) = X(0), θ(T ) = θ(0) (D.3)

This boundary condition also results in a supertrace naturally in the loop amplitude.

In this setting the color-ordered, N-point, 1-loop amplitude of the superparticle can

be written as:

AN = GN

∫ ∞

0
dT (2πT )−D/2

∫

0≤zr≤zr+1≤zN=T≤∞
dN−1zi KN e−

P

1≤r<s≤N kr ·ksGrs (D.4)

The factor (2πT )−D/2 comes from N
∫

DXe−
R

Ẋ2/2. The zi integration factors come from

the Nth order expansion of the vertex operator. The worldline Green function G(zs − zr)

is given in (4.8). Examples of the kinematic factor KN are given in section 5. The factor

GN is the trace of group generators in a given ordering.

D.2 Superstrings

The procedure is almost identical to the particle case. One difference is that our Green

functions are now doubly periodic:

Gx(z) = Gx(z + 2πi) = Gx(z + T )

Gθ(z) = Gθ(z + 2πi) = Gθ(z + T ) (D.5)

Again this periodic boundary condition in both directions is required by supersymmetry.

Also, there is a topological distinction among graphs, namely planar, nonplanar, and unori-

entable graphs. We will concentrate on the planar one here; the others follow from similar

considerations.

We can write the color-ordered, N-point, 1-loop, superstring amplitude in a form identi-

cal to that of the particle case (D.4), but with the string Green function given in appendix E.

After the usual change of variables

ρi = e−zi , w = ρN = e−T (D.6)

we have

GN

∫ 1

0

dw

w

(−2π

ln w

)D/2 ∫

0≤w≤ρr+1≤ρr≤1

N−1
∏

r=1

dρr

ρr
KN e−

P

1≤r<s≤N kr·ksGrs (D.7)

In the bosonic case there is a factor of [f(w)]−D+2 coming from the partition function

(and a w from the tachyon mass) for D X’s and the 2 reparametrization ghosts b and

c. In the supersymmetric case this is canceled (as in all superstring formulations) by an

[f(w)](2
D/2)(1−2+3−4+··· ) = [f(w)]2

(D−4)/2
which comes from the infinite pyramid of spinors,

in D = 10. However, the regularization introduces corrections to the spinor partition

function:
∏

n

(1 − wn)4(1 − wn)4 ⇒
∏

n

(1 − wn+iε)4(1 − wn−iε)4 (D.8)

The ε expansion of this partition function gives corrections to amplitudes. For example, in

the 6-point, 1-loop amplitude we expect a term ∼ (1/ε)6(ε2θ′′′1 /θ′1), where the (1/ε)6 comes

from 6 Gθ’s and the ε2θ′′′1 /θ′1 comes from expansion of the spinor partition function.
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E. Periodic Green functions

E.1 Second order

The general Fourier decomposition of a function in 2 dimensions with doubly periodic

boundary conditions ((x, y) ' (x + 2π, y) ' (x, y + 2πτ)) for real τ = T/2π is

G(x − x′, y − y′) =
∑

n,m

Gn,m ein(x−x′)+im(y−y′)/τ (E.1)

Then the Gn,m for the Green function of the differential operator −∂2
x − ∂2

y + ε2 is easily

found to be

Gn,m =
1

2πτ

1

n2 + m2

τ2 + ε2
(E.2)

For simplicity we can set x′ = y′ = 0 by translational invariance. Using Schwinger proper-

time parametrization we get

G(x, y) =
1

2πτ

∑

n,m

∫ ∞

0
ds e−s(n2+m2/τ2+ε2)+inx+imy/τ (E.3)

Next using Jacobi’s transform

∑

m

e−sm2/τ2+imy/τ = τ

√

π

s

∑

m

e−(2πm−y/τ)2τ2/4s

we get

G(x, y) =
1

2π

∑

n,m

∫ ∞

0
ds

√

π

s
e−(2πm−y/τ)2τ2/4s−s(n2+ε2)+inx (E.4)

Then using
∫ ∞

0
ds sα−1 e−ps−q/s = 2

(

q

p

)α/2

Kα(2
√

pq)

we get

G(x, y) =
1√
2π

∑

n,m

(

(2πmτ − y)2

n2 + ε2

)1/4

einxK1/2

(

√

(2πmτ − y)2(n2 + ε2)
)

(E.5)

Also using K1/2(z) =
√

π/2ze−z we get

G(x, y) =
1

2

∑

n,m

1√
n2 + ε2

e−|2πmτ−y|
√

n2+ε2+inx

=
1

2ε
e−ε|y| +

1

2ε

∑

m6=0

e−ε|2πmτ−y| +
1

2

∑

n 6=0

1√
n2 + ε2

e−|y|
√

n2+ε2+inx

1

2

∑

n,m6=0

1√
n2 + ε2

e−|2πmτ−y|
√

n2+ε2+inx (E.6)
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Now let’s transform each sum into a sum over positive integers only:

1

2ε

∑

m6=0

e−ε|2πmτ−y| =
1

ε
cosh(εy)

∞
∑

m=1

e−2πmτε

=
1

2ε
e−πτε cosh(εy)

sinh(πτε)
(E.7)

1

2

∑

n 6=0

1√
n2 + ε2

e−|y|
√

n2+ε2+inx =
1

2

∞
∑

n=1

1√
n2 + ε2

(λn
n + c.c.) (E.8)

1

2

∑

n,m6=0

1√
n2 + ε2

e−|2πmτ−y|
√

n2+ε2+inx =
1

2

∞
∑

n,m=1

1√
n2 + ε2

wmn
n (ρn

n + ρ−n
n + c.c.) (E.9)

where

ln λn = i

(

x + i|y|
√

1 +
ε2

n2

)

ln ρn = i

(

x + iy

√

1 +
ε2

n2

)

wn = e−2πτ
√

1+ε2/n2
(E.10)

We can subtract out G for the particle from G(x, y), which includes the part divergent as

ε → 0:
1

2ε

cosh[ε(|y| − πτ)]

sinh(πτε)
(E.11)

The remainder is

1

2

∞
∑

n=1

1√
n2 + ε2

(λn
n + c.c.) +

1

2

∞
∑

n,m=1

1√
n2 + ε2

wmn
n (ρn

n + ρ−n
n + c.c) (E.12)

In the ε → 0 limit (wn → w = e−T , λn → λ, ρn → ρ = e−z, z = y − ix), using

∞
∑

n=1

xn

n
= − ln(1 − x)

we get for the remainder

− ln |1 − λ| −
∞
∑

m=1

ln |(1 − wmρ)(1 − wmρ−1)| = − [Re(z)]2

2T
− 1

2
ln |λ| − ln |f(w)2| + Gx

un

where (assuming |y| = y for simplicity)

Gx
un(z, T ) = − ln

∣

∣

∣

∣

∣

2πθ1(
iz
2π | iT2π )

θ′1(0| iT2π )

∣

∣

∣

∣

∣

+
[Re(z)]2

2T

θ1

(

iz

2π
| iT
2π

)

= −iw1/8(ρ1/2 − ρ−1/2)

∞
∏

m=1

(1 − wmρ)(1 − wmρ−1)(1 − wm)
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θ′1

(

0| iT
2π

)

= 2πw1/8f3(w), f(w) =

∞
∏

m=1

(1 − wm)

and Gx
un is the unregularized Green function with the usual T -dependent “constant” added

to normalize its short distance behavior to be the same as that of the tree case (see,

e.g., [22]).

Combining the two parts we get

G(ρ) =
1

Tε2
+

y2

2T
− y

2
+

T

12
+ O(ε)

+
1

2
Re

(

ln2 ρ

ln w

)

− 1

2
ln |ρ| − ln |[f(w)]2| + Gx

un + O(ε)

=
1

Tε2
− 1

12
ln |w[f(w)]24| + Gx

un + O(ε) (E.13)

The first term is the zero-mode behavior, and the second term is a constant that won’t

contribute to massless amplitudes (because of derivatives and k2 = 0; the non-f piece is

the same as for the particle).

E.2 First order

The worldsheet Green function for θ can be obtained by differentiating that for X. However,

to be careful about zero-modes some modification is needed. For the 1st-order differential

operator −i(∂y − i∂x + ε) we find the mode sum of the Green function

Gθ =
i

T

∑

m,n

−im/τ + n + ε

m2/τ2 + (n + ε)2
einx+imy/τ

= i(−∂y − i∂x + ε)
1

2πτ

∑

m,n

1

m2/τ2 + (n + ε)2
einx+imy/τ

where the ε in the numerator is nontrivial because the second-order Green function has a

1/ε pole. The above sum is almost identical to the second-order case except for the change

n2 + ε2 ⇒ (n + ε)2. Therefore we can write the first-order Green function as

Gθ = i(−∂y − i∂x + ε)

[

1

2ε

cosh[ε(|y| − πτ)]

sinh(πτε)
+

1

2

∞
∑

n=1

1

n + ε
(λn

n + c.c.)

+
1

2

∞
∑

n,m=1

1

n + ε
wmn

n (ρn
n + ρ−n

n + c.c.)



 (E.14)

where

ln λn = i
[

x + i|y|
(

1 +
ε

n

)]

ln ρn = i
[

x + iy
(

1 +
ε

n

)]

wn = e−2πτ(1+ε/n)
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Hence it has a less divergent leading term followed by the expected differentiated second-

order Green function:

Gθ =
i

T ε
+

∞
∑

n=0

Gθ
nεn

=
i

T ε
+ i(∂y + i∂x)Gx

0 + O(ε) (E.15)

F. Super amplitudes

F.1 Super tree

In this section we give some details of the calculation of 3-point tree and 4-point 1-loop

super amplitudes.

We will concentrate on terms which give fermion contributions. In (3.1) only C,D,

and E give the AWW amplitude. Let’s consider A(1)W (2)W (3), for example. Us-

ing (2.1), (B.2) we get for the tree (no fermion zero-mode regularization)

〈Pa(1)Pb(2)〉 = −ηab
1

(z1 − z2)2

〈Dα(1)Ωβ(2)〉 = δβ
α

1

(z1 − z2)2

〈Pa(1)Dα(2)Dβ(3)〉 = −iγaαβ [
2

z1 − z2

1

(z1 − z3)2
− 2

z1 − z3

1

(z2 − z1)2

− 1

z2 − z3
(

1

(z1 − z2)2
+

1

(z1 − z3)2
)] (F.1)

Then we see in the Wess-Zumino gauge (Aα = γa
αβθβAa + O(θ2) + · · · , etc.)

C : (PPD) : −〈Pa(1)Pb(2)〉Aa(1)(Dα(3)Ab(2))W α(3)

= −i
1

(z1 − z2)2
1

z3 − z2
Aa(1)(dαAa(2))W

α(3)

= −i
1

(z1 − z2)2
2

z3 − z2
Aa(1)W (2)γaW (3)

(PDP ) : −〈Pa(1)Pb(3)〉Aa(1)(Dα(2)Ab(3))W α(2)

= −i
1

(z1 − z3)2
2

z2 − z3
Aa(1)W (3)γaW (2)

D : (PDD) : −〈Pa(1)Dα(2)Dβ(3)〉Aa(1)W α(2)W β(3)

= i

[

2

z1 − z2

1

(z1 − z3)2
− 2

z1 − z3

1

(z2 − z1)2

− 1

z2 − z3

(

1

(z1 − z2)2
+

1

(z1 − z3)2

)]

A(1) · W (2)γW (3)

E : (ΩDD) : 〈Ωα(1)Dβ(2)〉(Dγ (3)Aα(1))W β(2)W γ(3)

−〈Ωα(1)Dγ(3)〉(Dβ(2)Aα(1))W β(2)W γ(3)

= i

[

− 1

(z1 − z2)2
1

z3 − z1
+

1

(z1 − z3)2
1

z2 − z1

]

A(1) · W (2)γW (3) (F.2)

This reduces to (3.2).
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F.2 1 loop: 2 fermions + 2 vectors

We will concentrate on the case where the fermions are at both ends. The other case can be

easily obtained by permutation. There are two kinds of contributions: W (dW )(dddW )W

(with WF (ddF )W ) and W (dW )(dW )(ddW ) (and corresponding W (dW )F (dF )). The

W 2F 2 contribution gives a GP sum with the corresponding W 2(dW )2 as usual. The

explicit formula is

A : − W α(1)
(

dγW β(2)
)

(

1

3!
d[δdαdβ]W

γ(3)

)

W δ(4)

+
3

16
tr(γabγcd)W

α(1)F ab(2)

(

1

2!
d[δdα]F

cd(3)

)

W δ(4)

B : − W α(1)

(

1

3!
d[δdαdγ]W

β(2)

)

(dβW γ(3)) W δ(4)

+
3

16
tr(γabγcd)W

α(1)

(

1

2!
d[δdα]F

ab(2)

)

F cd(3)W δ(4)

C : − W α(1)
(

dαW β(2)
)

(dδW
γ(3))

(

1

2!
d[βdγ]W

δ(4)

)

+
3

16
tr(γabγcd)W

α
(

dαW β(2)
)

F ab(3)
(

dβF cd(4)
)

D : − W α(1)
(

dδW
β(2)

)

(dαW γ(3))

(

1

2!
d[γdβ]W

δ(4)

)

+
3

16
tr(γabγcd)W

α(1)F ab(2) (dαW γ(3))
(

dγF cd(4)
)

E : (dβdγW α(1))
(

dδW
β(2)

)

(dαW γ(3)) W δ(4)

− 3

16
tr(γabγcd)

(

dβF ab(1)
) (

dδW
β(2)

)

F cd(3)W δ(4)

F : (dγdβW α(1))
(

dαW β(2)
)

(dδW
γ(3)) W δ(4)

− 3

16
tr(γabγcd)

(

dγF ab(1)
)

F cd(2) (dδW
γ(3)) W δ(4) (F.3)

A and B vanish due to a GP sum. C + D and E + F give identical contributions, using

integration by parts (momentum conservation) and the (free) W field equation ∂/W = 0.

The results are given in (5.7).

These results appear in the literature in forms where neither gauge invariance nor

permutation symmetry (relating FFBB and FBFB) is manifest, which we now provide for

comparison. When written in terms of each momentum and gauge field, the results are

(before applying integration by parts)

C : −1

2
k1 · k2W (1)A/ 2k/2A/ 3W (4) +

1

2
A3 · k4W (1)A/ 2k/2k/3W (4)

D : −1

2
k1 · k3W (1)A/ 3k/3A/ 2W (4) +

1

2
A2 · k4W (1)A/ 3k/3k/2W (4)

E : −1

2
k1 · k3W (4)A/ 2k/2A/ 3W (1) +

1

2
A3 · k1W (4)A/ 2k/2k/3W (1)

F : −1

2
k1 · k2W (4)A/ 3k/3A/ 2W (1) +

1

2
A2 · k1W (4)A/ 3k/3k/2W (1) (F.4)
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Each of C + D and E + F can then be re-expressed as

1

2
k1 · k4 W (1)A/ 3k/3A/ 2W (4)

+k1 · k4 k4 · A2 W (1)A/ 3W (4) + k1 · k2 A2 · A3 W (1)k/2W (4)

+k1 · A2 k4 · A3 W (1)k/2W (4) + k1 · A3 k4 · A2 W (1)k/3W (4) (F.5)

Another expression for each of C,D,E,F can be obtained by absorbing the second term

into the first term, and the summed result is:

−k1 · k3 W (1)A/ 3(k/3 + k/4)A/ 2W (4) − k1 · k2W (1)A/ 2(k/2 + k/4)A/ 3W (4) (F.6)

F.3 1 loop: 4 fermions

There are totally 1
2 ·

(4
2

)

·2 ·2 = 3 ·4 = 12 terms (and also 12 corresponding (dF )2W 2 terms)

contributing to the 4-fermion amplitude:

[αβ][γδ] :
1

2!2!
(d[δdγ]W

α)W β(d[βdα]W
γ)W δ

− 1

2!2!
(d[γdδ]W

α)W βW γ(d[βdα]W
δ)

− 1

2!2!
W α(d[δdγ]W

β)(d[αdβ]W
γ)W δ

+
1

2!2!
W α(d[γdδ]W

β)W γ(d[αdβ]W
δ)

[αγ][βδ] : − 1

2!2!
(d[δdβ]W

α)(d[γdα]W
β)W γW δ

+
1

2!2!
(d[βdδ]W

α)W βW γ(d[γdα]W
δ)

+
1

2!2!
W α(d[αdγ]W

β)(d[δdβ]W
γ)W δ

− 1

2!2!
W αW β(d[βdδ]W

γ)(d[αdγ]W
δ)

[αδ][βγ] : − 1

2!2!
W α(d[αdδ]W

β)W γ(d[γdβ]W
δ)

+
1

2!2!
(d[γdβ]W

α)(d[δdα]W
β)W γW δ

− 1

2!2!
(d[βdγ]W

α)W β(d[δdα]W
γ)W δ

+
1

2!2!
W αW β(d[αdδ]W

γ)(d[βdγ]W
δ) (F.7)

For each term there are 4 terms, which come from [dαdβ − γa
αβ(−i∂a)]

2. Among them

only the γγ term survives, and the others vanish due to a GP sum from corresponding

(dF )2WW terms.

For each group two terms are equal to the other 2 terms, and the resultant 6 terms are

2W (1)γaW (2) W (3)γbW (4) kb
1k

a
3

−2W (1)γaW (2) W (3)γbW (4) kb
1k

a
4
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+2W (1)γaW (3) W (2)γbW (4) kb
1k

a
2

−2W (1)γaW (3) W (2)γbW (4) kb
1k

a
4

−2W (1)γaW (4) W (2)γbW (3) kb
1k

a
3

+2W (1)γaW (4) W (2)γbW (3) kb
1k

a
2 (F.8)

Symmetry between any two fermion lines is somewhat obscure in this form. But there are

Fierz identities which make it clear:

A : W (1)γaW (2) W (3)γaW (4)

= −W (1)γaW (3) W (4)γaW (2) − W (1)γaW (4) W (2)γaW (3)

B : W (2)γcγdγ
aW (1) W (4)γaγbγcW (3)kb

1k
d
3

= 4W (2)γaW (4) W (3)γaW (1)k2 · k3 − 4W (2)γaW (4) W (3)γbW (1)ka
3kb

2

+12W (2)γaW (3) W (1)γW (4)ka
1kb

3 − 12W (2)γaW3 W (1)γaW (4)k1 · k3

C : W (2)γcγdγ
aW (1) W (4)γaγbγcW (3)kb

1k
d
3

= 8W (2)γaW (4) W (3)γaW (1)k2 · k3 − 8W (2)γaW (4) W (3)γbW (1)ka
3kb

2

+16W (2)γaW (3) W (1)γW (4)ka
1kb

3 − 16W (2)γaW3 W (1)γaW (4)k1 · k3

−4W (2)γaW (1) W (4)γbW (3)ka
3kb

1 (F.9)

Using the above identities we can rewrite (F.8) as

4k1 · k2 W (1)γW (4) · W (2)γW (3) − 4k1 · k4 W (1)γW (2) · W (3)γW (4) (F.10)

Now symmetry in fermion lines can be checked using Fierz identity A.
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